CENNI STORICI E FONDATORI DELL' ASTRONOMIA

Il cinquecento. Da Copernico a Galilei 

Copernico
Copernico
Galilei
Galilei

L'astronomia moderna cominciò da Niccolò Copernico. Nella sua nuova visione, la Terra orbita intorno al Sole con moto circolare; il moto dei pianeti e le elongazioni di Mercurio e Venere venivano di conseguenza spiegati con estrema semplicità, senza dover ricorrere "all'artificio" degli epicicli e dei deferenti[58]. La rivoluzione copernicana nasceva nel clima filosofico già inaugurato da Nicola Cusano, che contestando la tesi geocentrica aveva sostenuto come l'universo fosse privo di un centro e di una circonferenza assoluti. 

  • Giordano Bruno non si limitò a sostenere una posizione eliocentrica, ma allargò a dismisura i confini del sistema tolemaico, allora limitato a un numero finito di orbite o sfere celestivisibili dalla Terra e ruotanti attorno a questa: per Bruno adesso il massimo orizzonte visibile dell'universo non costituiva più il suo limite estremo, perché oltre di esso occorreva ammettere, per mezzo della speculazione filosofica, la presenza di innumerevoli altri pianeti e cieli motori. Questi non sono più disposti in un ordine gerarchico a partire dalla prima Intelligenza motrice, ma ogni punto del cosmo, ogni corpo celeste diventa una sua diretta manifestazione.

Tycho Brahe è considerato tra i più grandi osservatori del passato. All'età di 30 anni ottenne dal re di Danimarca la concessione dell'isolotto di Hveen, ove avrebbe costruito "Uraniborg", l'osservatorio più importante dell'epoca. A seguito del passaggio di due comete nel 1577 e nel 1583 dedusse che questi corpi, tanto variabili, si trovassero oltre l'orbita lunare; cominciava quindi a cadere l'idea delle sfere associate al Sole, alla Luna e ai pianeti, come pensava Aristotele, così come cominciava a cadere l'idea dell'immutabilità del cielo stellato[61]. La fama di Brahe non è legata solo a queste considerazioni, ma soprattutto alle precise osservazioni effettuate con strumenti da lui stesso realizzati. Brahe determinò con precisione la lunghezza dell'anno terrestre, riscontrando l'accumulo di errori dal passato, tanto da rendere inevitabile la riforma del calendario. Riuscì poi a stabilire con una precisione mai raggiunta: l'obliquità dell'eclittica, l'eccentricità dell'orbita terrestre, l'inclinazione del piano dell'orbita lunare e l'esatta misura della retrogradazione dei nodi, scoprendo la non costanza del moto. Infine, compilò il primo catalogo moderno di posizioni stellari con oltre 1000 stelle.

Giovanni Keplero nel 1600 andò a Praga a lavorare come assistente di Brahe, e due anni dopo venne nominato suo successore. Utilizzò le osservazioni di Brahe e in particolare, studiando l'orbita di Marte, si accorse dell'esistenza di incongruenze tra teoria e pratica; provando e riprovando, Keplero capì che per limitare gli errori di calcolo l'unico modello che potesse spiegare il moto fosse quello ellittico, con il Sole in uno dei fuochi. Con tale deduzione Keplero gettò le basi della meccanica celeste; le tre leggi di Keplero infatti, furono una vera e propria rivoluzione, abbattendo l'ultima barriera ideologica alla radicata convinzione dei moti uniformi e circolari delle orbite dei pianeti.

Nel 1609, Galileo Galilei venne a sapere dell'invenzione del telescopio; dopo essersi documentato, ne costruì uno migliorandone le prestazioni e gli ingrandimenti. Quando lo puntò verso il cielo, le sue osservazioni rivelarono un universo mai visto prima: la Luna aveva una superficie scabrosa, Giove era circondato da quattro satelliti che gli ruotavano intorno, la Via Lattea era risolta in milioni di stelle, Saturno mostrava uno strano aspetto, mentre Venere aveva le fasi come la Luna. Tuttavia, nel 1632, dopo aver pubblicato il Dialogo sopra i due massimi sistemi del mondo, nel quale affermava apertamente le sue idee eliocentriche, Galileo fu costretto dalla Chiesa ad abiurare.

Il seicento L'astronomia matematica: Newton

Già dal periodo universitario Isaac Newton si occupò di studi matematici, di osservazioni astronomiche, fisiche e chimiche. Nel 1686 pubblicò la sua famosa opera Phylosophiæ naturalis principia matematica, che contiene anche la legge di gravitazione universale, vari studi sul moto dei fluidi e le leggi dell'urto; a lui si deve anche il calcolo infinitesimale, le funzioni di una variabile e la costruzione di tangenti su curve piane. In ottica espose la teoria della scomposizione della luce bianca secondo la famosa esperienza del prisma, fornendo anche spiegazioni sul fenomeno dell'arcobaleno. Studiò anche la forma della Terra, l'effetto delle perturbazioni dovute all'azione gravitazionale del Sole e quindi il fenomeno delle maree, da cui risalì anche alla valutazione della massa della Luna. Interpretò anche la precessione degli equinozi partendo dalla forma irregolare della Terra, e valutò lo schiacciamento polare conoscendo la velocità di rotazione e le dimensioni del pianeta. Christian Huygens si dedicò a studi di fisica e meccanica ottenendo delle scoperte fondamentali. A lui si deve la prima ipotesi della conservazione dell'energia, introducendo la "forza viva" che successivamente sarà chiamata "energia cinetica", applicata concettualmente anche alla possibilità di spiegare i fenomeni naturali in termini di cambiamenti di velocità e posizione di atomi microscopici. Fu il primo ad ipotizzare una teoria ondulatoria della luce secondo piccole esperienze, entrando così in polemica con Newton, il quale sosteneva la teoria corpuscolare, polemica che sarebbe terminata solo con la moderna concezione della doppia natura della luce: sia ondulatoria che corpuscolare. Si occupò anche di ottica, migliorando notevolmente gli strumenti astronomici, costruendo un oculare adatto a ridurre l'aberrazione cromatica. Queste migliorie ottiche gli consentirono di scoprire gli anelli di Saturno e la sua luna più grande, Titano (nel 1665).

Giovanni Domenico Cassini scoprì nel 1665 una breccia sugli anelli di Saturno, la cosiddetta divisione di Cassini. Successivamente scoprì alcuni satelliti: Giapeto (1671), Rea (1672), Dione e Teti (1684). Determinò anche l'unità astronomica con un errore inferiore al 7,5%.

Ole Romer collaborò con Cassini all'introduzione del micrometro filare ed ebbe anche la prima idea di montatura equatoriale. Il suo nome però, è legato indubbiamente alla prima vera misurazione della velocità della luce: utilizzando le effemeridi di Giove, notò come persistesse nel calcolo teorico un certo tempo tra il fenomeno calcolato (eclissi o transito del satellite) e la realtà; da ciò dedusse che, data la notevole distanza tra la Terra e Giove, la luce impiegava un determinato tempo per arrivare sino alla Terra, contraddicendo le convinzioni dell'epoca sull'istantaneità dei fenomeni luminosi. Egli giunse a stabilire che la luce viaggiava ad una velocità di 225 000 km/s, contro i 300 000 reali.

Edmund Halley nel 1678 fu nominato membro della Royal Society. Nel 1682 osservò la cometa che prenderà il suo nome, supponendo che compisse una rivoluzione completa lungo la sua orbita ogni 76 anni. Tramite i calcoli predisse il successivo passaggio che avvenne puntuale, ma che egli non vide a causa della sua morte. Nel 1718 mise in evidenza i moti propri delle stelle, dimostrando che almeno tre di esse, Sirio, Procione e Arturo, avevano cambiato posizione dai tempi di Tolomeo; scoprì inoltre l'ammasso dell'Ercole.

Il nome di James Bradley è legato alla scoperta dell'aberrazione della luce, la quale aprì la strada alle future misure di parallassi stellari. Osservando la stella γ Draconis, sospettata di mutare posizione, scoprì uno spostamento opposto a quello dovuto. Annotando tutti i dati necessari quali temperatura e comportamento del telescopio, annunciò nel 1729 la scoperta dell'aberrazione. Egli tuttavia notò che, calcolando gli effetti dell'aberrazione, resiste uno scostamento fisso di 2" d'arco, il quale indicava l'esistenza di un altro fenomeno: il fenomeno in questione era la nutazione, che determina uno spostamento delle posizioni stellari ogni 18,6 anni.

Il settecento. Il catalogo di Messier

Richard Christopher Carrington ricavò la legge di rotazione differenziale del Sole, e definì la "migrazione" delle macchie verso l'equatore nel corso del ciclo. La migrazione in latitudine è stata scoperta disponendo tutte le macchie osservate in un grafico a forma di farfalla.
Il primo settembre 1859, Carrington osservò una nuova classe di fenomeni solari: i brillamenti. Egli vide una specie di lampo che saettava tra due macchie con una durata di cinque minuti; poco dopo avvenne una tempesta magnetica, gli aghi delle bussole impazzirono e apparve il giorno dopo un'aurora boreale. Questo fenomeno si ripete tutte le volte che sul Sole avviene un brillamento

Charles Messier, astronomo francese, pubblicò nel 1774 il celebre catalogo che porta il suo nome. Accanito cacciatore di comete, ne scoprì una quindicina e ne osservò molte altre. Si appassionò nel catalogare gli oggetti del cielo inserendo anche una breve descrizione. Usò un modesto riflettore da 19 cm installato presso l'Hotel de Cluny al centro di Parigi. Tra le sue scorribande celesti scoprì e catalogò diversi oggetti famosi tra nebulose, galassie e ammassi, giungendo al numero di 103 oggetti; in seguito, altri astronomi ne aggiunsero altri facendo arrivare il catalogo a 110. Il catalogo di Messier, per quanto innovativo, presentava delle lacune osservative causate dalla modestia dello strumento usato. Herschel infatti dopo quasi un secolo risolse in stelle oggetti che Messier considerava semplici nebulosità.

Richard Christopher Carrington ricavò la legge di rotazione differenziale del Sole, e definì la "migrazione" delle macchie verso l'equatore nel corso del ciclo. La migrazione in latitudine è stata scoperta disponendo tutte le macchie osservate in un grafico a forma di farfalla.
Il primo settembre 1859, Carrington osservò una nuova classe di fenomeni solari: i brillamenti. Egli vide una specie di lampo che saettava tra due macchie con una durata di cinque minuti; poco dopo avvenne una tempesta magnetica, gli aghi delle bussole impazzirono e apparve il giorno dopo un'aurora boreale. Questo fenomeno si ripete tutte le volte che sul Sole avviene un brillamento
Il catalogo di Messier
Il catalogo di Messier

Herschel e la scoperta di Urano

Nel 1781, William Herschel scoprì Urano utilizzando un modesto telescopio da 18 cm. Questa scoperta, che lo fece divenire astronomo del Re, fu totalmente casuale: facendo conteggi stellari per determinare la forma della galassia, notò la presenza di un astro vicino alla stella 1 Geminorum; egli intuì che ciò che aveva all'oculare non era una stella, ma supponeva piuttosto che fosse una cometa, perché aumentando gli ingrandimenti aveva notato un dischetto circolare. Fece così una comunicazione ufficiale alla Royal Society, la quale constatò che egli aveva invece scoperto un pianeta. Nel 1787 scoprì anche due satelliti di Urano, Titania e Oberon, e fu il primo ad osservare anche gli anelli di Urano, anche se l'effetto fu interpretato come un difetto d'ottica; gli anelli infatti verranno confermati solo nel 1977. Nel 1789, con un telescopio da 1,2 m di diametro, osservò per primo due satelliti interni all'anello di Saturno, Encelado e Mimas[78]. Scoprì il sistema doppio ξ Bootis[80], la doppia Algieba (γ Leonis)[81], l'ammasso globulare NGC 2419 nella costellazione della Lince. Per ottenere questi risultati eccellenti, Herschel aveva costruito uno dei telescopi più grandi dell'epoca, un newtoniano di ben 1,22 m di diametro e 12,20 m di lunghezza focale. Per costruirlo impiegò tre anni di lavoro dal 1786 al 1789, affinando anche le tecniche di lavorazione dei telescopi e delle ottiche. Inoltre studiò la forma visibile della galassia, tracciandone un disegno completo e intuendone la forma lenticolare.

La meccanica celeste

Giuseppe Luigi Lagrange, oltre ai contributi alla matematica analitica e al calcolo delle funzioni, sviluppò un modello di meccanica celestemolto più complesso e preciso. Nel 1773 notò che era possibile esprimere la legge di Newton in termini di azione di un campo di forza che riempie lo spazio in modo continuo. In questo modo egli teneva ormai in considerazione gli effetti delle perturbazioni causate da altri pianeti su diversi valori come: inclinazione dell'orbita, direzione e lunghezza dell'asse maggiore, eccentricità dell'ellisse. Risultava così che i corpi celesti, pur mantenendo la loro orbita stabilita nel tempo, subivano molteplici influenze da parte degli altri pianeti.

Altro valido contributo alla meccanica celeste fu portato da Pierre Simon Laplace, che scoprì la ciclicità del moto di Giove e Saturno, ciclicità stimata in circa 900 anni, per cui i pianeti appaiono accelerare o decelerare reciprocamente. Tale variazione era già nota anche a Lagrange, ma solo Laplace ricondusse la variazione a un moto ciclico, confermando l'idea che il sistema solare presenta dei moti non casuali anche su grande scala temporale.

Le invenzioni di Fraunhofer e le misure di parallasse di Bessel

Joseph Von Fraunhofer fu l'artefice di una piccola rivoluzione strumentale. Nel 1812 cominciò a studiare un metodo per ottenere lastre di vetro prive di aberrazioni dell'immagine. Per raggiungere lo scopo, aveva bisogno di lavorare su ogni singolo colore prodotto dalle aberrazioni. Egli sfruttò allora il metodo del prisma con cui scompose la luce solare, ma nella scomposizione dei colori notò che lo spettro prodotto manteneva diverse righe nere del tutto indipendenti dal vetro usato: aveva scoperto le righe di Fraunhofer. Le righe nere infatti non dipendevano dall'ottica, ma dalla luce solare. Esse in realtà erano già state osservate da altri ottici, ma Fraunhofer fu il primo che ne annotò la posizione secondo la denominazione delle lettere dell'alfabeto; sarà successivamente Kirchhoff ad interpretare correttamente l'origine delle strane righe nere. Fraunhofer ebbe anche per primo l'intuizione di usare un reticolo di diffrazione, al posto del prisma, per la scomposizione della luce. Con questo mezzo l'immagine degli spettri risultava più precisa di quella ottenibile col prisma, introducendo così un nuovo modello di spettroscopio[84]. Perfezionò poi uno strumento che avrebbe premesso ulteriori scoperte astronomiche, l'eliometro, dapprima usato per la misura del diametro solare; a seguito dei perfezionamenti di Fraunhofer, Bessel riuscì ad ottenere la misura della prima parallasse stellare.

Friedrich Wilhelm Bessel fu uno dei più rappresentativi astronomi del XIX secolo. Nel 1838, grazie all'introduzione dell'eliometro di Fraunhofer, Bessel riuscì ad osservare la prima parallasse stellare e dunque a determinare la distanza della stella. Per la prima misura Bessel scelse la stella 61 Cygni, dotata di maggior moto proprio rispetto alle altre; dopo sei mesi di osservazioni riscontrò una parallasse che determinava una distanza di 10,7 anni luce, valore assai preciso anche per i nostri giorni. Nel 1844, dopo decenni di osservazioni, Bessel annunciò che Sirio ruotava attorno al baricentro di un sistema, ossia che Sirio comprendeva un oggetto invisibile. Queste scoperte aprivano la strada allo studio di posizione degli astri, nonché alla consapevolezza che l'universo visibile mostrava dimensioni enormi, ben oltre le aspettative iniziali.

L'ottocento. La scoperta dei primi asteroidi

Il primo gennaio 1801, Giuseppe Piazzi da Palermo scoprì un oggetto celeste che a prima vista sembrava una cometa. Divulgata la scoperta, Gausscominciò a osservare il corpo per determinarne i parametri orbitali, ma l'oggetto passò dietro il Sole; fu Olbers che lo ritrovò nel 1802. Valutata quindi l'orbita e la distanza, William Herschel definì l'oggetto "asteroide", in quanto, a causa del piccolo diametro, non riusciva a "risolverne" il disco, dando quindi un aspetto "quasi stellare". Piazzi lo battezzò col nome di Cerere Ferdinandea, poi modificato in Cerere. Inizialmente Cerere fu creduto un nuovo pianeta, anche perché si trovava esattamente alla distanza prevista dalla legge empirica di Titius-Bode.

Richard Christopher Carrington ricavò la legge di rotazione differenziale del Sole, e definì la "migrazione" delle macchie verso l'equatore nel corso del ciclo. La migrazione in latitudine è stata scoperta disponendo tutte le macchie osservate in un grafico a forma di farfalla.

Il primo settembre 1859, Carrington osservò una nuova classe di fenomeni solari: i brillamenti. Egli vide una specie di lampo che saettava tra due macchie con una durata di cinque minuti; poco dopo avvenne una tempesta magnetica, gli aghi delle bussole impazzirono e apparve il giorno dopo un'aurora boreale. Questo fenomeno si ripete tutte le volte che sul Sole avviene un brillamento
Cerere
Cerere
Richard Christopher Carrington ricavò la legge di rotazione differenziale del Sole, e definì la "migrazione" delle macchie verso l'equatore nel corso del ciclo. La migrazione in latitudine è stata scoperta disponendo tutte le macchie osservate in un grafico a forma di farfalla.
Il primo settembre 1859, Carrington osservò una nuova classe di fenomeni solari: i brillamenti. Egli vide una specie di lampo che saettava tra due macchie con una durata di cinque minuti; poco dopo avvenne una tempesta magnetica, gli aghi delle bussole impazzirono e apparve il giorno dopo un'aurora boreale. Questo fenomeno si ripete tutte le volte che sul Sole avviene un brillamento

Nel giro di pochi anni, Olbers scoprì Pallade e Vesta; Giunone fu scoperto nello stesso periodo da Karl Ludwig Harding. Dopo i primi quattro tuttavia, si dovette aspettare circa quarant'anni per vedere una nuova scoperta (Astrea, scoperto da Karl Ludwig Hencke).

Nonostante il continuo incrementarsi di tali scoperte, gli asteroidi furono considerati pianeti fino a circa il 1851, quando vennero riclassificati come "corpi minori" del sistema solare, ordinati in base ad un numero progressivo e non più in base alla distanza dal Sole (come i pianeti).

Il Sole e il ciclo delle macchie

Richard Christopher Carrington ricavò la legge di rotazione differenziale del Sole, e definì la "migrazione" delle macchie verso l'equatore nel corso del ciclo. La migrazione in latitudine è stata scoperta disponendo tutte le macchie osservate in un grafico a forma di farfalla.
Il primo settembre 1859, Carrington osservò una nuova classe di fenomeni solari: i brillamenti. Egli vide una specie di lampo che saettava tra due macchie con una durata di cinque minuti; poco dopo avvenne una tempesta magnetica, gli aghi delle bussole impazzirono e apparve il giorno dopo un'aurora boreale. Questo fenomeno si ripete tutte le volte che sul Sole avviene un brillamento

Nel 1848, Johann Rudolf Wolf introdusse un metodo di misura giornaliero delle macchie solari, detto anche "numero di Wolf"; questo valore tiene conto del numero di gruppi di macchie presenti e di quello singolo, seguito da un fattore K di valutazione delle condizioni di osservazione. Subito dopo l'introduzione di questo metodo, è stato possibile calcolare l'andamento ciclico dell'attività solare dal 1700 ad oggi, scoprendo l'esistenza di svariati cicli di attività solare, il più evidente dei quali è quello di 11,04 anni.

Richard Christopher Carrington ricavò la legge di rotazione differenziale del Sole, e definì la "migrazione" delle macchie verso l'equatore nel corso del ciclo. La migrazione in latitudine è stata scoperta disponendo tutte le macchie osservate in un grafico a forma di farfalla.
Il primo settembre 1859, Carrington osservò una nuova classe di fenomeni solari: i brillamenti. Egli vide una specie di lampo che saettava tra due macchie con una durata di cinque minuti; poco dopo avvenne una tempesta magnetica, gli aghi delle bussole impazzirono e apparve il giorno dopo un'aurora boreale. Questo fenomeno si ripete tutte le volte che sul Sole avviene un brillamento

Il 23 settembre del 1846 si ebbe la scoperta di Nettuno. Le vicende legate alla sua scoperta furono piuttosto complesse: nel 1821 un collaboratore di Laplace, Alexis Bouvard, pubblicò degli effemeridi di Urano, ma nell'introduzione al libro fece notare che vi erano delle discrepanze di posizione del pianeta; egli pensò subito all'idea di un corpo perturbatore[93]. Nel 1823, Bessel iniziò una serie di osservazioni alla ricerca del pianeta, confrontando i dati di Bouvard, senza però ottenere risultati. George Biddell Airy, nominato direttore dell'Osservatorio di Cambridge, rilevò anch'egli queste discrepanze tra calcoli e osservazione, presentando un rapporto ufficiale. John Couch Adams, dopo alcuni mesi di lavoro, concluse che le perturbazioni erano causate da un pianeta; dopo due anni di analisi delle osservazioni indicò in quale posizione potesse trovarsi il nuovo corpo. Anche Urbain Le Verrier, dopo aver ottenuto le stesse conclusioni, sollecitò i colleghi francesi alla ricerca, ma non avendo avuto grandi consensi si rivolse successivamente, presso l'Osservatorio di Berlino, a Johann Gottfried Galle[94]. Galle individuò alla prima notte di osservazione il nuovo pianeta dopo ben 25 anni di tentativi. La scoperta fu il trionfo della meccanica celeste e dei calcoli matematici[95][96].

Lo spettro degli elementi chimici

Robert Wilhelm Bunsen si dedicò ad una serie di esperimenti ll'azione chimica della luce sfruttando la sua celebre invenzione: il becco Bunsen (un bruciatore a gas regolabile). Egli cercò di identificare le sostanze chimiche mediante la colorazione della fiamma posta a contatto con le sostanze. Dapprima provò a identificare i tenui colori con dei filtri colorati, senza però ottenere una misura precisa; successivamente, l'amico Gustav Robert Kirchhoff suggerì l'idea di osservare la fiamma attraverso uno spettroscopio. L'idea era talmente valida che entrambi si misero a studiarne gli effetti con le diverse sostanze, scoprendo la correlazione tra sostanze e righe di Fraunhofer. A riprova del reale collegamento tra spettro ed elemento chimico, effettuarono altri esperimenti invertendo la condizione, e notando quindi come le stesse righe venissero prodotte, in emissione o in assorbimento, in base alle condizioni del materiale.

I primi passi della spettroscopia

Angelo Secchi proseguì l'opera appena avviata da Kirchhoff classificando le stelle in base al loro spettro. Egli infatti era convinto che su grande scala le stelle presentassero una logica suddivisione. Sfruttando uno spettrografo, Secchi distinse le stelle in quattro categorie: Tipo I, II, III e IV. La divisione spettrale divenne ancor più importante quando si scoprì il legame con la temperatura superficiale. Secchi ebbe così modo di compilare il primo catalogo spettrale della storia dell'astronomia-

William Huggins, dopo aver letto il rapporto di Kirchhoff sull'identificazione degli elementi chimici tramite lo spettro, decise di compiere ricerche in questo campo. Usando appunto uno spettrografo, iniziò la sua ricerca su altri oggetti del cielo: sulle comete individuò la presenza di idrocarburi gassosi, e nel 1866 puntò il suo strumento su una nova nella Corona Boreale, accorgendosi di una immane eruzione di idrogeno e altri gas. In questo modo avviò lo studio sui meccanismi delle nove, in quanto si pensava ancora fossero delle stelle nuove, o oggetti in rapido movimento. 

Lo spettro di una stella e gli elementi chimici rilevati
Lo spettro di una stella e gli elementi chimici rilevati

Il novecento


Crea il tuo sito web gratis! Questo sito è stato creato con Webnode. Crea il tuo sito gratuito oggi stesso! Inizia